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Treating neuromuscular diseases: unveiling 
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future applications
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Abstract 

In this review, we highlight recent advancements in adeno-associated virus (AAV)-based gene therapy for genetic 
neuromuscular diseases (NMDs), focusing on spinal muscular atrophy (SMA) and Duchenne muscular dystrophy 
(DMD). We discuss the current FDA-approved gene therapies for NMDs and provide updates on preclinical studies 
that demonstrate the potential of various AAV-based gene therapies to reduce SMA severity and serve as effective 
treatments for DMD. Additionally, we explore the transformative impact of CRISPR/Cas9 technology on the future 
of gene therapy for NMDs. Despite these encouraging developments, further research is required to identify robust 
biomarkers that can guide treatment decisions and predict outcomes. Overall, these pioneering advancements 
in AAV-based gene therapy lay the groundwork for future efforts aimed at curing genetic NMDs and offer a roadmap 
for developing gene therapies for other neurodegenerative diseases.

Keywords  NMD, Motor neuron, Gene therapy, ASO, SMA, DMD, AAV

Background
Neuromuscular diseases (NMDs) encompass all 
disorders caused by abnormalities in motor units, 
affecting the motor neurons of the spinal cord, 

neuromuscular junctions, or muscle tissues. In addition 
to NMDs caused by infection, autoimmunity, drugs 
or environmental chemicals, most other NMDs are 
hereditary degenerative diseases. Currently, more than 
1216 genetic NMDs, involving at least 686 pathogenic 
genes and proteins (including 78 mitochondrial genes), 
have been identified. These conditions are often classified 
as rare diseases, affecting approximately 1 in 2000 
people worldwide [1, 2]. Over the past decade, rapid 
developments and groundbreaking advancements in gene 
sequencing technologies have made molecular diagnoses 
of genetic NMDs more accessible, allowing for precise 
disease-modifying therapies (DMTs) that target the root 
causes of these conditions, apart from addressing their 
symptoms [3, 4].

Since 2016, the Federal Drug Administration (FDA) of 
the United States of America has approved various gene 
therapies as DMTs to treat genetic NMDs, providing 
the opportunity to change the fate of individuals 
severely affected by these conditions. Gene therapy is 
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a cutting-edge medical technique aimed at treating or 
preventing diseases by directly or indirectly modifying 
the genetic material within a patient’s cells. This 
approach holds the potential to address a wide range 
of genetic disorders, cancers, infectious diseases, and 
other pathologies that currently have limited treatment 
options [5]. A broad sense of gene therapies for specific 
NMDs can either be delivered via viral vectors or directly 
administered in the form of antisense oligonucleotides 
(ASO) or small molecule drugs. Nowadays, gene therapy 
is usually referred as viral vector-mediated gene/small 
RNA delivery as a means to treat NMDs. Based on the 
mechanism of action, a wide range of gene therapies can 
be categorized into the following four main strategies 
(see also the summary in Table 1):

1.	 Gene replacement therapy: This approach aims to 
correct monogenic diseases by providing a functional 
copy of the defective gene, thereby enabling normal 
protein production. For example, Hemophilia B is a 
blood clotting disorder caused by mutations in the 
F9 gene, which encodes the clotting factor IX. Gene 
therapy for Hemophilia B uses an AAV5 vector to 
deliver a functional copy of the F9 gene into liver cells, 
allowing patients to achieve sustained production 
of functional factor IX and thereby reducing the 
frequency of bleeding episodes and the need for 
regular factor IX infusions [6]. Other diseases 

being tackled by this approach are spinal muscular 
atrophy  (SMA) (onasemnogene abeparvovec) 
[7], Duchenne muscular dystrophy  (DMD) 
(delandistrogene moxeparvovec) [8], and sickle cell 
disease (lovotibeglogeno cutotemce) [9].

2.	 Gene addition: This approach, typically employed for 
cancer, infectious diseases, and other complex disor-
ders, involves supplementing the patient with thera-
peutic genes that target specific aspects of the disease 
mechanism. In Bacillus Calmette-Guérin (BCG)-
unresponsive nonmuscle-invasive bladder cancer, the 
first intravesical gene therapy uses a non-replicating 
recombinant adenovirus vector to deliver the human 
Interferon alpha-2b gene to urothelial cells. This 
therapy elicits direct impacts such as cell death and 
mediation of an antiangiogenic effect. Indirectly, it 
initiates immunomodulation of the innate and adap-
tive immune responses [10].

3.	 Gene knockdown by RNA interference (RNAi) or 
regulating messenger RNA (mRNA) splicing by 
ASO or small molecules: This method uses small 
interfering RNA (siRNA) molecules to degrade 
specific mRNAs, thereby reducing the production 
of disease-causing proteins. For instance, familial 
amyloid polyneuropathy (FAP) is a hereditary 
disorder caused by mutations in the transthyretin 
(TTR​) gene, leading to accumulations of misfolded 
TTR proteins and amyloid deposits in the peripheral 

Table 1  The four main strategies of gene therapy illustrated by FDA-approved drugs

RNAi: RNA interference; ASO: antisense oligonucleotide; #: cell-based gene therapy treatment utilizing CRISPR/Cas9 gene editing technology; i.v.: intravenous; i.t.: 
intrathecal; i.ves.: intravesical, Ref.: reference

Mechanism Disease Target gene Route Drug [brand name, year of FDA approval] Refs.

Gene replacement therapy Hemophilia B F9E i.v. Etranacogene dezaparvovec [Hemgenix, 2022] [6]

Spinal muscular atrophy SMN1 i.v. Onasemnogene abeparvovec [Zolgensma, 
2019]

[7]

Duchenne muscular dystrophy DMD i.v. Delandistrogene moxeparvovec [Elevidys, 2023, 
2024]

[8]

Sickle cell disease HBB i.v. Lovotibeglogeno cutotemce [Lyfgenia, 2023] [9]

Gene addition BCG-unresponsive nonmuscle-invasive 
bladder cancer

IFNα2b i.ves. Nadofaragene firadenovec [Adstiladrin, 2022] [10]

Gene knockdown
(RNAi, ASO, small molecule)

Familial amyloid polyneuropathy TTR​ i.v. Patisiran [Onpattro, RNAi, 2018] [11]

Spinal muscular atrophy SMN1 i.t. Nusinersen [Spinraza, ASO, 2016] [12]

SMN1 Oral Risdiplam [Evrysdi, oral small molecule, 2020] [13]

Amyotrophic lateral sclerosis SOD1 i.t. Tofersen [Qalsody, ASO, 2023] [14]

Duchenne muscular dystrophy DMD i.v. [Etepliersen, ASO, 2016] [15]

DMD i.v. [Golodirsen, ASO, 2019] [16]

DMD i.v. [Viltolarsen, ASO, 2020] [17]

DMD i.v. [Casimersen, ASO, 2021] [18]

Gene editing# Sickle cell disease HBB i.v. Exagamglogene autotemcel# [Casgevy, 2023] [19]

Transfusion-dependent beta thalassemia HBB i.v. Exagamglogene autotemcel# [Casgevy, 2024] [19]
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nerves and other tissues. Gene knockdown therapy 
for FAP involves using siRNA molecules encapsulated 
in lipid nanoparticles to target and degrade TTR​ 
mRNA in the liver, reducing the production of both 
mutant and wild-type TTR proteins. Consequently, 
serum levels of TTR are significantly reduced and 
neurological function and patient quality of life are 
improved [11]. Other diseases being targeted by this 
approach are SMA (Spinraza, ASO [12]; Evrysdi, 
small molecule [13]), amyotrophic lateral sclerosis 
(ALS) (Tofersen, ASO) [14], and DMD (Etepliersen, 
exon 51 skipping, ASO [15]; Golodirsen, exon 53 
skipping, ASO [16]; Viltolarsen, exon 53 skipping, 
ASO [17]; and Casimersen, exon 45 skipping, ASO 
[18]).

4.	 Gene correction or editing: This strategy involves 
introducing targeted changes in the host genome to 
correct genetic mutations or modify gene expression. 
For example, sickle cell disease (SCD) and trans-
fusion-dependent β-thalassemia (TDT) are severe 
monogenic diseases. BCL11A is a transcription fac-
tor that represses γ-globin and fetal hemoglobin 
(HbF) in erythroid cells. Gene editing approaches 
for both diseases aim to induce HbF expression to 
alleviate symptoms. By using CRISPR-Cas9 to tar-
get the BCL11A erythroid-specific enhancer in 
CD34+ hematopoietic stem and progenitor cells from 
healthy donors, ~ 80% allele modification without off-
target effects has been achieved. In a clinical report, 
two patients, one suffering TDT and the other SCD, 
received autologous CD34+ cells edited in the same 
way after myeloablation. More than a year later, 
both patients showed high levels of allelic editing, 
increased pancellular fetal hemoglobin, transfusion 
independence and, for the SCD patient, elimination 
of vaso-occlusive episodes [19].

To administer gene therapies via viral vectors, AAV 
is commonly used to deliver the desired gene to a par-
ticular target [20]. AAV delivers genes by entering cells 
via endosomes and yet, importantly, the delivered genes 
are not integrated into the genome. Upon endosomal 
rupture, the therapeutic DNA enters the cell nucleus as 
a double-stranded molecule and it is rendered ready for 
transcription by forming a circular episome [21]. Several 
characteristics of AAVs make them amenable as a plat-
form for the production of recombinant vectors used in 
gene therapy, such as their lack of pathogenicity, defec-
tive replication, non-genome-integrating behavior, ability 
to establish long-term transgenic expression, and multi-
ple serotypes permitting liver targeting [20, 22–24].

The current success of AAV-based gene therapies 
for genetic NMDs is aptly exemplified by two well-
characterized diseases, i.e., SMA and DMD. Therefore, in 
the following sections of this mini-review, we update on 
current progress of clinical trials for SMA and DMD gene 
therapies, as well as several preclinical studies on AAV-
mediated treatments. Then, we discuss current progress 
and future potential applications of pioneering in  vivo 
base-editing approaches. Finally, we briefly summarize 
the potential applications of NMD biomarkers as an 
accessory approach to advance novel gene therapies.

Successful gene therapy of SMA, complemented 
by ASO‑based and small molecule therapies 
for patients of all ages
SMA is an autosomal recessive neurodegenerative disor-
der manifesting as degeneration of spinal motor neurons, 
with concomitant muscle atrophy and weakness. This 
disorder arises from an autosomal recessive mutation in 
or deletion of the Survival Motor Neuron 1 (SMN1) gene 
[25]. SMA patients possessing bi-allelic mutations in the 
SMN1 gene exhibit symptoms such as weakness in the 
muscles that control movement, breathing, and swallow-
ing. SMA is one of the most prevalent genetic disorders 
affecting young children, and it is a major cause of death 
in infancy. Evolutionary conservation of the SMN1 gene 
across metazoans highlights its essential role, with SMN1 
loss-of-function typically resulting in embryonic lethality. 
Notably, the human genome harbors a unique hypomor-
phic paralog, SMN2, that shares 99% sequence identity 
with SMN1 but that is characterized by a C-to-T nucleo-
tide variant in exon 7 that often results in exon exclusion. 
Consequently, only ~ 10% of SMN2 transcripts are com-
plete and translated into functional SMN protein. This 
restricted production of SMN protein from the SMN2 
transcript is pivotal for the survival of SMA patients, with 
SMN2 gene copy number being a key genetic determi-
nant of SMA severity [26, 27]. However, recent research 
has shown that SMA can also affect various other tissues 
and organ systems, which is why it is increasingly being 
referred to as a systemic disease [28–30].

Restoring SMN protein levels in spinal motor neurons 
has been regarded as the most straightforward approach 
to curing SMA and the one with the greatest potential, 
but an effective treatment was not available until a few 
years back. As levels of complete SMN2 transcripts are 
generally inversely correlated with SMA severity, the 
development of SMA therapies began by screening for 
modifiers of SMN2 mRNA splicing to facilitate inclusion 
of exon 7, thereby increasing the production of full-
length SMN2 transcripts. After years of basic research 
followed by clinical trials, two splicing modifiers have 
been approved by both the U.S. FDA and European 
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Medicines Agency (EMA) to treat SMA: nusinersen, an 
antisense oligonucleotide (ASO) drug (approved in 2016 
and 2017 by the FDA and EMA, respectively) [12]; and 
risdiplam, a small molecule oral drug (approved in 2020 
and 2021, respectively) [13].

Nusinersen (or ASO-10–27) is an ASO that binds to 
the intron downstream of exon 7 in SMN2 pre-mRNA 
at an intronic splicing silencer, thus promoting exon 7 
inclusion and ultimately enabling production of more 
functional SMN protein. A preclinical proof-of-princi-
pal study using SMNΔ7 (Smn−/−, SMN2+/+, SMNΔ7+/+) 
mice, a mouse model of severe SMA, achieved increased 
SMN protein levels in spinal motor neurons via single 
intracerebroventricular (i.c.v.) administration of nusin-
ersen. This treatment directed at the central nervous 
system (CNS) was sufficient to ameliorate motor neu-
ron loss in the spinal cord of the mice, improve myofiber 
size and NMJ morphology, enhance motor function, and 
promoted survival [31]. In addition, peripheral admin-
istration of nusinersen via subcutaneous injection pro-
vided additional benefits to the SMNΔ7 mice apart from 
neuromuscular rescue, including improved heart histol-
ogy. Since nusinersen cannot penetrate the blood brain 
barrier, these outcomes highlight the potential systemic 
significance of restoring SMN protein levels beyond the 
CNS [32]. Clinically, both infants and children receiving 
intrathecal injections of nusinersen display significant 
and clinically meaningful improvements in motor func-
tion, with infants being more likely to survive compared 
to control groups (ENDEAR, NCT02193074 [12]; CHER-
ISH, NCT02292537 [33]).

In contrast, risdiplam is a small molecule drug that also 
promotes inclusion of exon 7 in SMN2 transcripts. It was 
discovered through a serial process of chemical screen-
ing and optimization. Importantly, risdiplam and its 
related compounds are delivered orally and can penetrate 
into various tissues, including the brain, spinal cord, and 
muscle, leading to increased SMN levels in the CNS and 
muscle of mouse models of both mild (C/C-allele) and 
severe forms (SMNΔ7) of SMA. Administration of ris-
diplam to SMNΔ7 mice has been found to improve their 
motor function, preserve neuromuscular connectivity, 
and extend survival [34–37]. Clinically, meaningful and 
significant improvements in event-free survival, attain-
ment of motor milestones, and enhanced motor func-
tions have been reported from clinical trials on type 1 
SMA (FIREFISH, NCT02913482) and type 2 and 3 SMA 
(SUNFISH,  NCT02908685) patients after certain issues 
regarding safety and target-specificity were alleviated 
[35–38].

While both ASO and small molecule seem to be effec-
tive, and this once-incurable disease can now benefit 
from a choice of different life-saving therapies, there are 

still some limitations in real clinical settings. For instance, 
exorbitant costs often hinder the feasibility of currently 
available therapeutics. In the U.S., nusinersen treatment 
costs US$750,000 in the first year, including the loading 
doses, and then US$375,000 for every subsequent year. 
Risdiplam costs US$100,000–340,000 per year [39]. In 
addition, as lifelong repeat dosing is necessary for the 
aforementioned SMA treatments, which is stressful for 
both clinicians and patients, a one-time treatment that 
permanently cures the disease is clearly more desirable. 
In this scenario, a gene replacement therapy for SMA 
was first introduced in 2010, whereby a self-complemen-
tary adeno-associated viral serotype 9 vector carrying a 
copy of the gene coding for SMN (scAAV9-SMN1) was 
systemically introduced into the SMNΔ7 mouse model 
[40–42]. Three pioneering studies demonstrated consist-
ent results that single-dose intravenous (i.v.) injection of 
scAAV9-SMN1 successfully increased functional SMN 
protein expression in both CNS and peripheral tissues 
and resulted in a markedly extended lifespan, as well as 
improved motor function and NMJ electrophysiology 
[40–42]. Another study in the same year demonstrated 
enhanced motor function, improved NMJ architecture, 
and extended lifespan by delivering an AAV8 vector 
expressing human SMN directly into the CNS of SMNΔ7 
mice [43]. The clinical applications of the scAAV9-SMN1 
gene therapy have since been studied extensively, and 
promising results were reported in 2017. After a sin-
gle i.v. dose of scAAV9-SMN1 treatment was given to a 
cohort of type 1 SMA patients, the patients presented 
better motor function and achieved motor milestones, 
as well as longer survival, relative to historical cohorts 
[NCT02122952] [7]. This scAAV9-SMN1 therapy, 
namely onasemnogene abeparvovec, was approved by 
the FDA in 2019. Notably, this approval was not affected 
by one of the pivotal research articles pertaining to the 
scAAV9-SMN1 gene therapy being retracted in 2022 due 
to multiple inaccuracies in data reporting [44]. Updates 
on onasemnogene abeparvovec clinical trials are summa-
rized in Table 2. The drug mechanisms, routes of admin-
istration, clinical uses, therapeutic effects, and side effects 
of three FDA-approved DMTs for SMA are outlined in 
Table  3, including several meta-analyses demonstrating 
the effectiveness of these therapies in terms of stabiliz-
ing or improving motor function across a diverse popula-
tion of children, adolescents, and adults with varied SMA 
phenotypes [45–49]. All three DMTs have demonstrated 
that presymptomatic treatment initiated following SMA 
newborn screening leads to significantly better outcomes 
compared to treatment initiated at the symptomatic stage 
[50].

Notably, although SMA was initially considered a 
motor neuron-centered disease that requires therapeutics 
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targeting the CNS, peripheral organs are also affected by 
systemic SMN deficiency [51]. Therefore, it is critical to 
determine the most efficacious route for administering 
the AAV vector used for treating SMA. In animal studies, 
both centrally (i.c.v.) and peripherally (i.v.) delivered 
AAV9-SMN successfully rescued the survival of SMA 
mice. Induction of SMN expression in the spinal cord 
was significantly greater when delivered by i.c.v. than 
by i.v., concomitant with a greater number of motor 
neurons being preserved in the i.c.v. treated group [52]. 
In contrast, better NMJ morphology was observed in 
the i.v. treated group, implying that SMN is needed at 
the muscle end to help better maintain the NMJ [52, 53]. 
Interestingly, restricting SMN restoration in the neurons 
by i.c.v. delivery of AAV9-SMN with a neuron-specific 
promoter failed to rescue the disease phenotype of SMA 
mice, reinforcing the idea that non-neuron cell types also 
play important roles in SMA pathology [54].

Clinically, intrathecal (i.t.) delivery of onasemnogene 
abeparvovec, evaluated in a phase 1 ascending-dose study 
involving sitting, nonambulatory patients with SMA, was 
found to be safe and well-tolerated. In addition, efficacy 
was demonstrated in SMA patients aged 2–5 years who 
received the medium dose (1.2 × 1014 vg), as evidenced 
by improvements in HFMSE scores, which exceeded 
those typically observed for the disease [55]. Altogether, 
preclinical studies have indicated an advantage of 
ubiquitous restoration of SMN throughout different 
organs, supporting that onasemnogene abeparvovec 
should be delivered systemically via i.v. infusion, though 
i.t.-based administration of onasemnogene abeparvovec 

may also benefit patients. However, a detailed study 
comparing treatment efficacy following central versus 
peripheral administration is warranted to provide direct 
evidence of the best administration route.

In addition to gene therapies designed to boost SMN 
protein production, other preclinical animal studies are 
being rigorously pursued aimed at uncovering novel indi-
rect or non-SMN disease modifiers as targets for AAV-
based gene therapies to treat SMA or to facilitate current 
SMA treatments. These alternative targets are being 
sought largely due to some patients proving non-respon-
sive to currently available treatments. Moreover, identi-
fying additional therapeutic targets that could be applied 
synergistically with current SMN-restoring therapies has 
the potential to expand the therapeutic window. In the 
following section, we briefly describe the background of 
each target, treatment regimens, and outcomes (see also 
the summary in Table 4).

1.	 AAV-mediated delivery of protein-coding genes 
other than SMN1

a)	 scAAV9-UBA1

Deficiency of SMN protein in mouse and Drosophila 
models of SMA has been shown to result in reduced 
expression of E1 ubiquitin-like modifier activating 
enzyme 1 (UBA1), which disrupts ubiquitin homeostasis. 
Interestingly, mutation in the UBA1 gene is a known 
cause of X-linked spinal muscular atrophy type 2, a 
rare SMA subtype that also elicits SMA-like symptoms. 

Table 2  Update on clinical trials for onasemnogene abeparvovec in spinal muscular atrophy (SMA)

i.v.: intravenous; i.t.: intrathecal

Trial name (ID) Phase/route Patient recruited Interventional model Status Outcome measure

SMART (NCT04851873) 3b/i.v Any (symptomatic) SMA type, 
weighed ≧8.5 kg and ≦21 kg

Multi-center,
open label,
single group assignment

Completed Safety, efficacy

STEER (NCT05089656) 3a/i.t SMA type 2 (able to sit, never 
walked), aged 2 to ≦18 years

Multi-center randomized,
sham-controlled double-blind 
study,
cross over assignment

Ongoing Safety, efficacy

STRONG (NCT03381729) 1/i.t SMN2: 3 copies, aged 
≧ 6 months and < 5 years

Parallel assignment,
open label,
non-randomized,
multi-center

Terminated Safety, tolerability

STRENGTH (NCT05386680) 3b/i.t Discontinued treatment 
with nusinersen or risdiplam, 
aged 2 to < 18 years

Open-label,
non-randomized,
single arm,
multi-center study

Ongoing Safety, tolerability, efficacy

SPECTRUM (NCT05335876) 3/i.v. and i.t Long-term follow-up 
of patients with SMA treated 
with onasemnogene abepar‑
vovec in clinical trials

15-years follow up from the 
date of onasemnogene abe‑
parvovec administration

Ongoing Safety, tolerability, efficacy
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Suppression of the conserved uba1 gene in zebrafish by 
genetic and pharmacological approaches was observed 
to result in SMA-like motor neuron symptoms [56]. 
Moreover, the link between the common type of SMA 
and disrupted ubiquitin homeostasis is conserved in 
humans. Powis et al. uncovered that induced pluripotent 
stem cells (iPSC) from SMA patients that had been 
differentiated into motor neurons exhibited reduced 
UBA1 expression levels, indicating that UBA1 may 
represent a potential therapeutic target for SMA. To 
further explore the hypothesis that restoring UBA1 
levels could rescue the SMA phenotype, Powis et  al. 
administered the “Taiwanese” mouse model of SMA with 
an i.v. injection of 2.4 × 1011 scAAV9-UBA1 viral genomes 
on the day of birth (postnatal day P0). Compared 
to mice receiving control scAAV-GFP, the scAAV9-
UBA1-treated group presented improved body weight, 
motor performance, spinal motor neuron numbers, 
neuromuscular innervation, myofiber size, and heart and 
liver pathology, and their survival time increased from 
9 to 12  days. Additionally, the treatment corrected the 
disruption to ubiquitin homeostasis at a molecular level 
[57].

b)	 scAAV9-STAS

Stasimon (STAS), also known as TMEM41B, is an U12 
intron-containing gene encoding an ER-resident trans-
membrane protein, and U12 splicing was found to be dis-
rupted by SMN deficiency [58, 59]. STAS has been linked 
to SMA, as not only is it regulated by SMN protein, but 
it is also required for motor circuit development in both 
Drosophila and zebrafish, with STAS overexpression 
found to reduce SMN deficiency-induced neuronal phe-
notypes in these organisms [60]. In addition, both mis-
processing and reduced expression of STAS have been 
uncovered in pathology-associated neurons in the motor 
circuits of SMA model mice [60]. To establish how STAS 
dysfunction contributes to SMA pathology, Simon et al. 
performed scAAV9-mediated STAS gene delivery on the 
SMNΔ7 mouse model by administering an i.c.v. injection 
of 1 × 1011 genome copies of respective viral vectors at 
P0. The scAAV9-STAS treatment showed rescue effects 
on motor function, motor neuron survival, and synap-
tic connections from proprioceptive neurons to motor 
neurons. However, the treated SMNΔ7 mice exhibited 
no significant improvements in body weight or lifespan 
upon scAAV9-STAS treatment [61].

c)	 scAAV9-PLS3

Plastin 3 (PLS3) is an evolutionarily conserved protein 
that binds and bundles actin filaments. A study on 

siblings displaying SMN1 deletion and with varying 
disease severities unbiasedly uncovered an association 
between PLS3 expression levels and SMA severity 
in female patients. Overexpression of PLS3 not only 
increased F-actin levels in a HEK293T cell line, but it also 
rescued axongenesis in  vitro of primary motor neurons 
from Smn−/−;SMN2+/+ mice, another SMA model, as 
well as motor neuron outgrowth in  vivo of zebrafish 
subjected to smn knockdown [62]. To further elucidate 
how PLS3 overexpression ameliorates SMA severity 
in a more relevant disease model in  vivo, Ackermann 
et  al. generated the “Taiwanese” SMA mouse model by 
overexpressing PLS3 fused with a V5 tag (SMAPLS3V5) 
in background strains of varying SMA disease severity. 
The 50% FVB/N and 50% C57BL/6N mixed backgrounds 
exhibit less severe disease than the pure C57BL/6N line. 
In the less severe mixed background SMA mouse lines, 
PLS3  overexpression rescued body weight, myofiber 
size, and motor function, in part by improving F-actin 
dynamics and functional connectivity at neuromuscular 
synapses, with mean survival time being extended 
from ~ 17 days to 19 days. However, PLS3 overexpression 
in SMA mice from the pure C57BL/6N background only 
improved neuromuscular endplate and myofiber sizes 
[63]. In addition, other disease-modifying mechanisms 
independent of F-actin organization also exist. For 
instance, investigations into functional domains of 
PLS3 have indicated that PLS3 can interact with Ca2+ 
ions, thereby supporting the growth of Smn-deficient 
motor neurons in zebrafish [64]. Moreover, selection of 
PLS3 as a therapeutic target has been further justified 
by observations that PLS3 expression levels were 
significantly lower in the spinal cord of SMNΔ7 mice at 
post-natal day 5 (P5) and P10 than detected in wild type 
mice at the same stages [65].

Given these findings, two studies have aimed to develop 
an AAV-based disease-modifying drug for SMA that tar-
gets PLS3. Kaifer et al. demonstrated that i.v. delivery of 
1011 genome copies of scAAV9-PLS3 at P1 extended the 
survival time of Smn2B/− mice that display intermediate 
disease severity, but this rescue effect was not seen in 
severe SMNΔ7 mice subjected to scAAV-PLS3 treatment 
alone [66]. Nevertheless, the scAAV9-PLS3 treatment 
significantly ameliorated the disease severity of SMNΔ7 
mice when they were co-administered with 2  nmol of 
a splicing-correcting morpholino ASO. In addition to 
the rescue effects of the morpholino ASO treatment on 
SMNΔ7 mice, co-administration with scAAV9-PLS3 
improved motor function, neuromuscular endplate mor-
phology, and myofiber size. Moreover, the survival time 
of these morpholino ASO plus scAAV9-PLS3 co-treated 
SMNΔ7 mice increased from 30 to 43 days [66]. In con-
trast to i.v.-administered scAAV9-PLS3 delivery alone 
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neonatally, which did not extend SMNΔ7 mouse survival, 
delivery of AAV9-PLS3 directly into the CNS via intra-
cisternal magna (i.c.m.) injection proved more effica-
cious. By administering just 1010 vg of AAV9-PLS3 into 
the CNS of SMNΔ7 mice at P1, median survival time was 
increased significantly from 11 to 17 days [65]. However, 
that study did not evaluate how AAV9-PLS3 delivery 
affected motor ability or neuromuscular physiology.

d)	 scAAV9-SNCA

Transcriptional profiling of motor neurons displaying 
differential vulnerability to disease may reveal genetic 
contributors to motor neuron diseases. One such study 
compared the differentially-expressed transcripts iden-
tified from four independent screening datasets, which 
uncovered the same transcript patterns between the dif-
ferentially vulnerable motor neurons across three motor 
neuron diseases, i.e., SMA, ALS, and spinobulbar muscu-
lar atrophy [67]. In total, six gene transcripts were identi-
fied as being altered in a common direction from three 
microarray datasets published previously and their own 
RNAseq data.

One of the commonly altered genes in that study, Alpha 
synuclein (SNCA), was reported to be downregulated in 
the spinal cord and fibroblasts of SMA patients and it has 
shown protective effects against degenerative stresses on 
neuronal cells [68–70]. Therefore, SNCA became the first 
of the six potential therapeutic targets to be investigated 
further. A dose of either 1 × 1011 or 3 × 1011 scAAV9-
SNCA viral particles was administered via i.c.v. injection 
into the Smn2B/− mouse model of SMA at P1. Whereas 
the lower dose of scAAV9-SNCA resulted in no signifi-
cant impact on survival time or weight gain, the higher 
dose enhanced median survival time from 26 to 49 days. 
Moreover, the higher scAAV9-SNCA dose improved the 
motor function and NMJ morphology of the of Smn2B/− 
mice compared to the untreated control group [67]. It 
remains to be explored whether SNCA overexpression 
protects neurons by reducing stress-related signaling, as 
observed for stressed conditions, or through other mech-
anisms [70, 71].

e)	 scAAV9-STMN1

As the comparative study across four transcrip-
tional screens by Kline et al. showed promising results 
through its identification of SNCA as a functionally 
relevant disease modifier [67], another investigation 
was initiated on a further candidate therapeutic tar-
get of SMA [72]. Stathmin (STMN1) is a ubiquitously 
expressed microtubule-binding protein important for 
regulating microtubule dynamics and it was reported 

previously as being dysregulated in mouse models of 
ALS and SMA [73, 74]. Interestingly, Stmn1 gene defi-
ciency prompts central and peripheral axon degen-
eration in aging mice [75]. As STMN1 transcript levels 
were reduced in the datasets of all four screens [67], 
Villalon et al. investigated the disease-modifying effects 
of overexpressing STMN1 in the Smn2B/− mouse model 
by using scAAV9 as a delivery vector. Administration of 
1 × 1011 scAAV9-STMN1 viral particles by i.c.v. injec-
tion at P2 extended the median survival time of the 
SMA model mice from ~ 20 to 30  days. In addition, 
body weight, motor function, motor neuron survival, 
motor neuron size, NMJ morphology, and microtu-
bule filamentous networks were all improved by the 
scAAV9-STMN1 treatment [72].

f )	 scAAV9-DOK7

Downstream of tyrosine kinase 7 (DOK7) is a non-
catalytic scaffold protein that mediates activation and 
signal transduction of the Agrin/MuSK signaling path-
way [76]. DOK7 is essential for NMJ development, and 
DOK7 mutation has been linked to NMJ synaptopathies 
[77]. The potential of DOK7 as a SMA disease modi-
fier is underscored by the emerging significance of its 
upstream operator, Agrin, in SMA-associated NMJ 
pathology [78, 79]. Importantly, overexpression of DOK7 
has been shown to ameliorate NMJ-linked symptoms 
of both Emery-Dreyefuss muscular dystrophy and ALS 
[80, 81]. Using scAAV9-mediated gene delivery, Kaifer 
et  al. examined the potential of DOK7 overexpression 
to reduce symptoms in Smn2B/− mice [82]. Following a 
single i.v. dose of 1 × 1011 scAAV9-DOK7 viral genomes 
at P1, median survival was marginally, yet significantly, 
increased by one day (from 21 to 22 days). Muscle physi-
ology–including myofiber size, grip strength, and NMJ 
endplate size—was partially restored, but motor neuron 
numbers and size were not improved by the scAAV9-
DOK7 treatment [82].

2)	 AAV-based delivery of microRNAs (miRNAs) and 
other small non-coding RNAs

The significance of miRNAs to neurodegenerative dis-
eases such as SMA and ALS is only beginning to emerge 
[83]. Not only are their expression levels affected during 
the neurodegenerative process, but they also can actively 
influence disease progression by regulating cell death, 
neurite outgrowth, and excitotoxicity [84–86]. Hence, the 
development of novel miRNA-based gene therapies has 
garnered attention with regard to facilitating the perfor-
mance of currently available treatments. Dysregulated 
miRNAs in SMA contexts represent primary candidates 
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for miRNA-based therapies, as they may potentially con-
tribute to SMA pathology. Screening efforts to identify 
candidate miRNAs should analyze the molecular mecha-
nisms by which they contribute to SMA pathology to rule 
out miRNAs that are secondarily altered upon disease 
onset.

a)	 scAAV9-miR-23a

Kaifer et  al. reported that a series of miRNAs were 
downregulated in iPSC-derived motor neurons of type I/
II SMA patients [87]. Among those miRNAs, the authors 
selected miR-23a for further analyses based on its abil-
ity to ameliorate muscular atrophy and neuroprotective 
(anti-apoptotic and pro-myelinating) effects. Introduc-
ing miR-23a into iPSC-derived motor neurons of SMA 
patients partially rescued the motor neuron loss induced 
by astrocyte-conditioned media. The disease-modifying 
efficacy of miR-23a was further examined by delivering 
it into Smn2B/− mice via the scAAV9 vector. A single i.v. 
dose of 1 × 1011 scAAV9-miR-23a viral genomes at P1 
partially alleviated SMA neuromuscular pathology in the 
Smn2B/− mice, as revealed by increased motor neuron 
size, NMJ endplate area and innervation, and myofiber 
cross-sectional area relative to controls. In addition, 
the scAAV9-miR-23a treatment (both via i.v. and i.c.v. 
routes) extended median survival from ~ 20 to ~ 35 days, 
albeit without significant rescue of body weight through-
out lifespan [87].

b)	 scAAV9-miR-34a

Chen et al. demonstrated that, among a list of miRNAs 
that function in the spinal cord and are enriched during 
motor neuron and/or interneuron development, miR-
34a exhibits the most consistent downregulation dur-
ing SMA onset and progression both in iPSC-derived 
motor neurons of type 1 SMA patients and in the spinal 
cord of SMNΔ7 mice [88]. Moreover, knocking out the 
miR-34/449 family in non-SMA mice was found to reca-
pitulate SMA pathology at the neuromuscular level, as 
revealed by swelling of axonal terminals, shrinkage of 
NMJ endplate areas, and myofiber atrophy. Introduc-
ing a single i.v. dose of 1 × 1010 scAAV9-miR-34a viral 
genomes at P0 improved the ability of SMNΔ7 mice to 
right themselves at P7, which was strongly correlated 
with restoration of NMJ endplate size. However, no evi-
dence was presented in that study to show if the lifespan 
of the SMNΔ7 mice was extended by the scAAV9-miR-
34a treatment [88].

c)	 scAAV6/9-siPTEN

Small interfering RNAs (siRNAs) share many 
characteristics with miRNAs, both being short RNA 
duplex molecules processed by Dicer and that exert 
their functions primarily through the formation of an 
RNA-induced silencing complex. One critical difference 
distinguishing siRNAs from miRNAs is that the former 
are highly specific to a single gene target, whereas the 
latter often have multiple gene targets [89]. Consequently, 
the development of siRNA-based therapeutics is based 
solely on the biological roles of its target gene. In 
contrast, miRNAs may exert their own physiological 
regulatory roles.

In a previous study, Ning et  al. uncovered that PTEN 
depletion promoted the survival of SMN-deficient motor 
neurons [90], prompting their subsequent investigation 
of an siRNA-based SMA therapy targeting PTEN [91]. 
First, they demonstrated that their siPTEN treatment, 
involving local injection of a single dose of 1010 scAAV6-
siPTEN (viral genomes) into the levator auris longus 
muscle of SMNΔ7 mice at P1, significantly ameliorated 
innervated NMJ pathology. Next, they systemically 
delivered siPTEN via i.v. injection of scAAV9 (1010 viral 
genomes) and found that doing so increased the mean 
lifespan of SMNΔ7 mice from ~ 10 to ~ 30  days relative 
to the control siRNA-treated group [91]. Importantly, 
knocking down PTEN also promoted motor neuron sur-
vival in vivo [91].

d)	 AAV9-ExspeU1

Small nuclear RNAs (snRNAs) are another group of 
small non-coding RNAs that can bind to several pro-
teins to form small nuclear ribonucleoprotein particles 
(snRNPs), which play a primary role in RNA splicing. 
One type of snRNP composed of U1 snRNA (i.e., U1 
snRNP) is critical for defining exons during the precur-
sor-mRNA splicing process, with disruption of this pro-
cess potentially causing exon skipping. It has been shown 
that several disease-causing splicing mutations, including 
SMN2 exon 7 in the context of SMA, can be corrected by 
exon-specific engineered U1 snRNAs (ExSpeU1) [92]. As 
a follow-up study, Donadon et al. systemically delivered 
a U1 snRNA (ExSpeU1sma) specifically tailored to cor-
rect the SMN2 exon 7 splicing defect into the Taiwanese 
severe SMA mouse model (Smn−/−; SMN22TG/0) via two 
intraperitoneal (i.p.) injections of AAV9-ExspeU1sma 
(1.5 × 1012 vg per mouse) at P0 and P2. This treatment 
greatly extended the survival of the mice from ~ 10 
to ~ 219 days. Rescue effects in terms of body weight, tail 
length, and motor function were also observed. In addi-
tion, by correcting the splicing defect, SMN protein lev-
els at P7 in heart, muscle, liver, and spinal cord, but not in 
brain, were all significantly increased [93].
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In summary, these preclinical studies have gener-
ated promising results from various AAV-based gene 
therapies applied to different SMA mouse models. 
Although some of these studies uncovered therapeutic 
effects from increased SMN protein levels, the major-
ity of treatments did not affect SMN protein levels. 
Interestingly, these SMN-independent approaches also 
improved neuromuscular physiology, motor function, 
and even survival time, implying that even sympto-
matic relief and/or functional compensation of SMN 
protein could be beneficial in SMA contexts. Hence, 
it would be valuable to investigate if these SMN-inde-
pendent AAV-based gene therapies hold promise to be 
applied in combination with onasemnogene abeparvo-
vec as AAV cocktails.

In addition, it is important to select a suitable serotype 
of the AAV vector for gene therapy. We have outlined the 
specific advantages and safety profiles of AAV vectors 
that have been clinically approved or commonly used in 
NMD studies in Table  5 [21, 94–102]. Among multiple 
AAV serotypes, AAV9 has been almost exclusively 
selected for both animal studies and clinically for SMA 
treatment via systemic and CNS-targeted routes due to 
its superior transduction efficiency into cells, its ability 
to cross the blood–brain-barrier, and its tropism to a 
wide range of tissues [97]. Selection of AAV serotypes 
for DMD gene therapy is mainly based on tropism 
favoring skeletal muscle tissue, thereby making AAV6, 
AAV8, and AAV9 common choices. Additionally, 
to reduce the immunogenicity of the AAV capsid, a 

non-human-originated serotype derived from rhesus 
monkey, rAAVrh74, is considered clinically superior for 
DMD treatment, as it also mediates effective transgene 
expression in muscles [103]. Overall, clinical studies are 
still required to confirm the safety and efficacy of each 
therapeutic gene target and the potential of new AAV 
serotypes for real patients.

Gene therapy for DMD: complemented by RNA 
and small molecule therapies for patients 
of limited age
Duchenne muscular dystrophy (DMD) is a life-threat-
ening X-linked recessive disease and the most common 
genetic neuromuscular disorder. It is caused by muta-
tions in the DMD gene, which result in the absence or 
insufficient levels of functional dystrophin. Without dys-
trophin, muscles are more vulnerable to damage, leading 
to progressive muscle weakness and dysfunction. This 
deterioration ultimately causes loss of ambulation, car-
diomyopathy, respiratory insufficiency, and can be fatal 
[104, 105]. The first symptoms of DMD include diffi-
culty climbing stairs, a waddling gait, and frequent falls, 
typically appearing around 2 to 3 years of age. By 10 to 
12  years old, most patients become wheelchair-depend-
ent, and assisted ventilation is usually required by age 20. 
Despite optimal care, most individuals with DMD suc-
cumb to cardiac and/or respiratory failure between 20 
and 40  years of age [105]. Mutations in the DMD gene 
can also lead to Becker muscular dystrophy, a milder 
form of the disease characterized by later onset and 

Table 5  Tropism, advantages and safety concerns of clinically approved or NMD-relevant AAV serotypes

BBB: blood–brain barrier; CNS: central nervous system; na: not applicable

Serotype Tropism towards 
the CNS and/or 
muscle

Key advantages Safety concerns FDA-approved drugs (brand name; 
year)/disease

AAV2 Both Well-studied, safe for retina and CNS Prevalence of neutralizing antibod‑
ies, immune activation

Voretigene neparvovec-rzyl (Luxturna; 
2017)/biallelic RPE65 mutation-associ‑
ated retinal dystrophy

AAV5 Both Lower immune reactivity Dose-related liver toxicity Etranacogene dezaparvovec-drlb 
(Hemgenix; 2022)/hemophilia B
Valoctocogene roxaparvovec-rvox 
(Roctavian; 2023)/adults with severe 
hemophilia A

AAV6 Muscle Effective for muscle transduction Mild immune activation na

AAV8 Both Robust liver and muscle transduction Liver toxicity at high doses na

AAV9 Both Crosses BBB, CNS and muscle target‑
ing

Cardiac toxicity, immune activation Onasemnogene abeparvovec 
(Zolgensma; 2019)/spinal muscular 
atrophy aged less than 2 years

rAAVrh74 Muscle Reduced immunogenicity, effective 
for muscle transduction

Risk of myocarditis Delandistrogene moxeparvovec-rokl 
(Elevidys; 2023)/ambulatory and non-
ambulatory individuals 4 years of age 
and older with DMD with a confirmed 
mutation in the DMD gene
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slower progression compared to DMD [106]. The esti-
mated global incidence of DMD is 1 in 3,500 to 5,000 live 
male births [107].

Advanced multidisciplinary care and steroid treatments 
have improved DMD patient survival. On this basis, 
the FDA has recently approved two drugs that target 
the anti-inflammatory pathogenic processes of DMD. 
Vamorolone (October 2023), a novel corticosteroid that 
acts through the glucocorticoid receptor to exert anti-
inflammatory and immunosuppressive effects, is believed 
to be better-tolerated in terms of side effects than current 
standard-of-care corticosteroids [108]. Givinostat 
(March 2024), a histone deacetylase inhibitor, is the 
first nonsteroidal drug for all DMD genetic variants, 
which acts by reducing inflammation and preventing 
muscle loss [109]. As prolonged survival becomes more 
common, various anticipatory diagnostic and therapeutic 
strategies are increasingly being adopted [110, 111].

Recent studies have significantly enhanced our 
understanding of the primary and secondary 
mechanisms underlying DMD. This improved insight 
into pathogenesis is driving the development of 
innovative DMTs of DMD [112]. To date, several 
treatments designed to restore the missing dystrophin 
protein through gene-based therapeutic strategies have 
been approved by the FDA. Using predesigned ASOs, 
mutant codons can be targeted to induce exon skipping 
of the DMD gene, allowing for production of proteins 
having partial dystrophin functionality. Approved 
therapies include eteplirsen for exon 51 skipping [15], 
golodirsen and viltolarsen for exon 53 skipping [16, 
17], and casimersen for exon 45 skipping [18] (Table 1). 
In terms of AAV-based gene replacement therapy 

for DMD, the large full-length DMD gene presents 
difficulties for AAV vectors for gene delivery. As a 
solution, a smaller, functional micro-dystrophin gene 
is being used instead. An update on recent progress in 
the development of micro-dystrophin gene replacement 
therapies to treat DMD is summarized in Table  6 
[113, 114]. In June 2023, the FDA granted approval 
for delandistrogene moxeparvovec, a gene therapy 
targeting DMD, specifically for ambulatory patients 
aged 4 to 5. In June 2024, this approval was expanded to 
include both ambulatory and non-ambulatory patients 
aged 4  years and older [8, 115]. These strategies, which 
focus on prevention, early identification, and treatment 
of predictable and potentially modifiable disease 
complications, aim to provide a better quality of life for 
DMD patients and their families.

Although the FDA has approved four ASOs and one 
AAV-mediated gene replacement therapy for DMD, 
these current therapies are not sufficiently curative and 
only primarily aim to slow down disease progression, 
and their overall impact remains limited. Specifically, the 
genetic mutations causing DMD are highly variable and 
unique to individual patients, which restricts the num-
ber of patients who benefit from existing ASO therapies 
[116]. To address this limitation, multi-exon skipping 
has emerged as a promising strategy. Unlike the single-
exon approach of current ASOs, this method employs 
an ASO "cocktail" to simultaneously skip multiple exons. 
For instance, a cocktail targeting exons 45–55 has been 
validated in both in vitro and in vivo studies, offering the 
potential to treat nearly 50% of DMD patients [117].

AAV-based gene replacement therapies have also 
proved challenging due to the packaging capacity of AAV 

Table 6  Update on developments of micro-dystrophin gene replacement therapy for Duchenne muscular dystrophy (DMD)

CT: C-terminal domain
# The death of a 16-year-old non-ambulatory trial participant with advanced disease, who was treated with a high dose (2 × 1014 vg/kg) of PF-06939926 in an open-
label Phase Ib trial (NCT03362502), led to a temporary FDA hold on the drug [113]
* Pfizer Inc. have announced that its Phase 3 trial (NCT03362502) of the mini-dystrophin gene therapy in young boys with DMD did not achieve its primary goal of 
improving motor function [114]

Drug name/Trial ID Sponsor Micro-dystrophin AAV serotype Promoter Status

Delandistrogene moxeparvo‑
vec (SRP-9001)/
NCT05096221
NCT03375164

Sarepta Therapeutics ΔR4-23/ΔCT rAAVrh74 MHCK7 FDA Approval/
Phase III
Phase I/II

PF-06939926/
NCT04281485
NCT03362502

Pfizer ΔR3-19/20–21/ΔCT AAV9 hMSP Terminated
Phase III*
Phase Ib#

SGT-001/
NCT03368742
SGT-003/
NCT06138639

Solid Biosciences ΔR2-15/R18-22/ΔCT AAV9
AAVSLB101

CK8 Phase I/II
Phase I/II

RGX-202/
NCT05693142

Regenxbio ΔR4-23 (includes CT) AAV8 Spc5-12 Phase I/II
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vectors, which is limited to approximately 4.7 kilobases. 
This capacity is insufficient for delivering large coding 
sequences such as DMD’s 14-kilobase messenger RNA. 
In addition, the net clinical benefit of delandistrogene 
moxeparvovec has been questioned [118]. Intriguingly, 
a novel gene replacement technique leveraging protein 
trans-splicing mediated by split inteins has demonstrated 
success in expressing large dystrophins in striated 
muscles of a DMD mouse model [119]. Restoration 
of large or full-length dystrophin proteins can be 
achieved by systemic delivery of AAV vectors, resulting 
in significant physiological improvements (e.g., less 
muscle wastage, reduced muscle fibrosis, and increased 
force production) in dystrophic mice. Importantly, the 
rescue effects were mediated by a novel type of AAV 
vector, AAVMYO, administered at low doses, and the 
improvements were significantly greater when compared 
to a micro-dystrophin-treated group [119].

In summary, these findings justify continued investiga-
tion into the development of novel, enhanced ASO and 
AAV-based gene replacement therapies for future clinical 
applications. Another category of AAV-based gene ther-
apy, CRISPR-based gene editing, also known as "myoed-
iting" in DMD contexts, holds promise for providing 
a one-time treatment for DMD by directly correcting 
genetic mutations and restoring normal gene expression 
[120]. As discussed in the next section, although none 
of these gene editing therapies have been approved for 
clinical use to treat DMD, several gene editing strate-
gies in preclinical models have demonstrated therapeutic 
efficacy and safety, paving the way for a potential break-
through in DMD treatment.

Unveiling gene therapy breakthroughs: exploring 
gene editing
Breakthroughs in gene-editing therapy based on 
CRISPR/Cas9 technology, by which targeted changes 
can be introduced into the host genome, have raised 
hope for permanent cures for genetic NMDs by correct-
ing the underlying genetic mutations or modifying gene 
expression. As exemplified by efforts to develop DMD 
treatments, robust preclinical studies have been con-
ducted over the past decade on gene-editing approaches, 
with various editing strategies being deployed to tackle 
different mutations in the DMD gene to restore func-
tional expression. However, several challenges must be 
addressed, including optimizing gene editing, effectively 
delivering the gene-editing components to all muscles in 
the body, and suppressing potential immune responses 
to the CRISPR therapy [120]. Below, we summarize the 
main concept and advantages of different CRISPR-medi-
ated gene editing strategies to treat DMD and, in Table 7, 
we outline several promising preclinical studies on DMD 

mouse models utilizing systemic delivery via the AAV 
vector.

Double-cut exon excision to edit the DMD gene 
involves using two single-guide RNAs (sgRNAs) to tar-
get and remove specific exons from the dystrophin gene. 
This approach can be applied to most DMD cases and is 
particularly effective for correcting exon duplications. 
By excising the mutant exons, this method restores the 
reading frame and allows for the production of func-
tional dystrophin protein, either full-length or truncated. 
Several studies in which dystrophin function was suc-
cessfully restored via double-cut gene editing by means 
of systemic delivery of AAV in DMD mouse models are 
summarized in Table 7 [121–130]. However, the double-
cut method has limitations, including low editing effi-
ciency and off-target effects, as it requires precise and 
simultaneous cuts at two genomic sites, followed by 
accurate rejoining of the DNA. This process can be espe-
cially challenging across large genomic regions [125]. In 
addition, using two sgRNAs at the same time increases 
the risk of unintended genome modifications at the 
double-strand break (DSB) sites, including DNA inver-
sions, aberrant splicing, or integration of the exogenous 
DNA from AAV [125]. These unpredictable outcomes 
pose substantial barriers to the clinical application of this 
technique [120, 131].

Single-cut gene editing represents a promising 
strategy for correcting diverse mutations in the DMD 
gene. Using a single sgRNA to target regions near 
intron–exon boundaries or splice signal sequences, it 
introduces a single DSB, which is then rejoined via the 
non-homologous end joining (NHEJ) mechanism. This 
repair process can result in two desired outcomes, exon 
skipping or exon reframing, by disrupting splice sites of 
out-of-frame exons or by restoring the reading frame, 
respectively. Both outcomes can lead to the restoration of 
functional dystrophin proteins. Importantly, this method 
has advantages, such as higher editing efficiency, reduced 
off-target effects, and minimal genomic alterations 
compared to double-cut strategies, making it more 
suitable for correcting DMD mutations [120]. In Table 7, 
we summarize several studies that successfully restored 
dystrophin function via single-cut gene editing through 
systemic delivery of AAV into DMD mouse models 
[132–137]. Limitations of single-cut gene editing include 
variable efficiency, which is dependent on the mutation 
and target site, with the dystrophin restoration rate 
ranging from 36 to 60% depending on the target exon 
[131, 138]. In addition, though using only one sgRNA 
reduces off-target effects, generation of DSBs still poses 
the potential risk of unintended DNA integration. These 
challenges highlight the need for careful design and 
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delivery strategies to maximize therapeutic efficacy while 
minimizing potential adverse effects.

Targeted gene insertion, or exon knockin, is 
theoretically useful for addressing mutations in critical 
regions of the DMD gene to restore full-length dystrophin 

Table 7  Preclinical studies on systemic-administered, AAV-based gene editing therapies for treating Duchenne muscular dystrophy 
(DMD)

TA: tibialis anterior muscle; quads: quadriceps muscle; gastroc: gastrocnemius muscle; i.v.: intravenous route; i.p.: intraperitoneal; CBE: cytosine base editor; ABE: 
adenine base editor

Gene editing 
strategy and 
targeted exons and 
effects on DMD gene

Mouse model AAV Treatment Rescued muscles References

Serotype Route Total dosage per 
mouse

Nuclease:guide RNA 
ratio

Double-cut editing

 Exon 23 excision mdx AAV9 i.p.; i.v 2 × 1014 vg/ml—30 µl 
for i.p.; 90 µl for i.v

2:1:1 TA, heart [123]

 Exon 23 excision mdx AAV8 i.p.; i.v 5.6 × 1011 vg for i.p.; 
5.4 × 1012 vg for i.v

1:1 Abdominal, dia‑
phragm, heart, TA

[124]
[125]

 Exon 23 excision mdx AAV9 i.p.; i.v 3 × 1012 vg for i.p.; 
3.6 × 1012 vg for i.v

1:1 Heart, gastroc, TA, dia‑
phragm, abdominal, 
triceps, quads,

[128]

 Exon 23 excision mdx AAV9 i.v 1.08 × 1013 or 4 × 1014 
vg

2:1 or 1:3 Heart, quads, gastroc [122]

 Exon 21–23 excision mdx/Utr+/− AAVrh.74 i.v 1 × 1012 vg Single vector Heart [129]

 Exon 21–23 excision mdx AAVrh.74 i.p 1 × 1012 vg Single vector Heart [126]

 Duplicated exon 
18–30 excision (tar‑
geting exon 21)

Dup18-30 AAV9 i.v 3 × 1012 vg Single vector Heart, TA, triceps, 
diaphragm

[127]

 Formation of hybrid 
exons 47 & 58

Δ52hDMD/mdx AAV9 i.v 7.5 × 1013 vg/kg 1:1 Heart [121]

 Exon 52–53 excision mdx4cv AAV6 i.v 1.4 × 1013 vg 5:2 TA, diaphragm, soleus, 
gastroc

[130]

Single-cut editing

 Exon 45 skipping/
reframing

ΔEx44 AAV9 i.p 3 × 1014 or 5.5 × 1014 
vg/kg

1:5 or 1:10 Heart, TA, diaphragm [133]

 Exon 45 skipping/
reframing

ΔEx44 scAAV9 i.p 8.4 × 1013–1.6 × 1014 
vg/kg

Ranging from 1:0.05 
to 1:1

Heart, TA, triceps, 
diaphragm

[134]

 Exon 51 skipping/
reframing

ΔEx50 AAV9 i.p 6.3 × 1010 vg n/a Heart, triceps, gas‑
troc, plantaris, quads, 
diaphragm

[132]

 Exon 51 skipping/
reframing

ΔEx50-Dmd-Luc AAV9 i.p 3 × 1014 vg/kg 1:2 Heart, TA, triceps, 
diaphragm

[137]

 Exon 51 skipping/
reframing

ΔEx50 AAV9 i.p 2 × 1014 or 4 × 1014 
vg/kg

Single vector Heart, TA, triceps, 
diaphragm

[136]

 Exon 51 skipping/
reframing

ΔEx50;h51KI AAV9 i.p 1.6 × 1014 vg/kg 1:1 Heart, TA, triceps, 
diaphragm

[135]

Exon knockin

 Insertion of exon 52 
or superexon 52–79

Δ52hDMD/mdx AAV9 i.v 8.64 × 1011 or 7 × 1011 
vg

1:1 or 1:5 Heart [142]

Base editing

 CBE, exon 4 skip‑
ping

DmdE4* AAV9 i.p 1.1 × 1012 vg 1:1 Heart, TA, diaphragm, 
quads

[148]

 ABE, exon 53 muta‑
tion correction

mdx4cv AAV9 i.v 1 × 1014 vg/kg 1:2 (in split constructs) Heart, gastroc, dia‑
phragm

[151]

 ABE, exon 45 skip‑
ping

ΔEx44 AAV9 i.v 1.5 × 1014 & 3 × 1014 
vg/kg

1:1 Heart, TA [149]

 ABE, exon 50 skip‑
ping

ΔEx5051;h50KI AAV9 i.p.; i.v 1 × 1014 vg/kg 1:3 (in split constructs) Heart, TA, diaphragm [150]
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protein. The homology-directed repair (HDR) method 
may achieve this purpose by using a natural DNA repair 
mechanism, which relies on a donor DNA template 
to correct the gene precisely. However, HDR is highly 
dependent on active cell division, making it inefficient in 
non-dividing, post-mitotic cells such as mature myofibers 
[131, 139, 140]. In addition, the size of the donor DNA 
template is limited and dependent on the delivery vectors, 
with the risk of inverted integration further restricting 
the clinical applicability of this method, especially for 
large deletions [140]. In contrast, NHEJ-based homology-
independent targeted integration (HITI) represents an 
alternative approach that circumvents the limitations of 
HDR. By using CRISPR/Cas9 technology to introduce 
cuts in both the genome and donor DNA template, the 
NHEJ repair pathway allows more precise integration 
of the donor sequence at the target site [131, 140, 141]. 
Unlike HDR, NHEJ-based HITI works efficiently in both 
dividing and non-dividing cells, ensuring its applicability 
in muscle. HITI has been applied successfully in a DMD 
mouse model to restore dystrophin expression in skeletal 
and cardiac muscles by inserting the missing exon 52 or a 
52–79 superexon [142], as summarized herein in Table 7. 
Although the rate of restoration in cardiac muscle is 
variable and with scope for improvement, this method 
demonstrates potential for treating large-scale deletions 
and for being applied to over 20% of global DMD patients 
[142].

The base editing system represents a precise and 
efficient approach to correcting genetic mutations 
without relying on the error-prone repairment of DNA 
DSBs. Two primary types of base editors have been used 
for this purpose, i.e., cytosine base editors (CBEs) and 
adenine base editors (ABEs) that mediate C:G-to-T:A 
and A:T-to-G:C base pair conversions, respectively. The 
base editors are particularly useful for addressing point 
mutations in the dystrophin gene by directly repairing the 
mutation or inducing exon skipping by modifying splice 
sites [143, 144]. CBEs have been associated with off-
target effects at both genomic and transcriptomic levels, 
raising concerns about unintended consequences, such 
as oncogenesis, whereas ABEs have been highlighted 
for their relatively higher specificity and lower off-target 
activity [131, 145–147]. In Table 7, we present a summary 
of several studies in which dystrophin function has been 
rescued via base editing using systemic AAV delivery 
in DMD mouse models [148–151]. The relatively large 
size of base editors poses a challenge for delivery using 
AAV vectors. This issue can be overcome by using a split 
intein-based approach, which allows efficient assembly 
of full-length base editors [150, 151]. Additionally, the 
therapeutic range of base editing is currently limited 

to specific mutation types, making it suitable for an 
estimated 25–35% of DMD patients with point mutations 
[140].

Although CRISPR-based, AAV-mediated gene edit-
ing therapies for DMD have been studied extensively 
over recent years, only one of the various in  vivo gene-
editing strategies is currently undergoing a clinical trial. 
A human DMD exon 50 skipping cytosine base-edit-
ing drug just entered the recruiting phase in July 2024 
(NCT06392724) [152].

Unlike for DMD, no gene-editing therapy for SMA 
has yet entered clinical trials. Limitations of currently 
approved SMA drugs, which either require repeat 
administration or display reduced efficacy over time, 
have prompted accelerated research into gene-editing 
therapies. Given that two approved SMN2 splicing modi-
fiers can restore SMN protein levels and effectively treat 
SMA, similar concepts have been applied to gene-edit-
ing therapies. Specifically, CRISPR/Cas9 technology has 
been used to correct SMN2 splicing [153]. However, the 
first preclinical studies on AAV-based gene-editing ther-
apy to treat SMA in animal models were not published 
until 2023 [154].

To develop a more desirable permanent therapy that 
restores endogenous SMN expression with a single dose, 
while preserving native transcriptional and translational 
regulatory processes, Arbab et al. performed conversion 
in  vivo of the SMN2 gene into SMN1 by base editing 
using an AAV9 vector [154]. First, candidate base-edit-
ing strategies were tested in embryonic stem cells from 
the SMNΔ7 mouse model. After testing a total of 79 
base-editing and nuclease strategies targeting differ-
ent regions of SMN2, one ABE strategy displaying high 
target efficiency and specificity was selected for further 
investigation in  vivo. A dose of 2.7 × 1013 vg/kg body 
weight of AAV9-ABE was administered via i.c.v. injec-
tion into SMNΔ7 mice at P0, which resulted in a conver-
sion rate of 87% C6T (C-to-T exchange at position 6 in 
exon 7 of SMN2) in GFP-sorted transduced cells labeled 
by co-delivered AAV9-GFP. This AAV9-ABE treat-
ment alone rescued the motor unit numbers and muscle 
action potentials of SMNΔ7 mice, with median survival 
time increasing from 17 to 22  days. Since SMN protein 
accumulation after AAV9-ABE treatment is relatively 
slow and thus exceeds the short therapeutic window for 
SMNΔ7 mice, the authors co-administered nusinersen 
to attenuate disease progression and extend the thera-
peutic window. Interestingly, this combination therapy 
of AAV9-ABE plus nusinersen outperformed nusinersen 
treatment alone in terms of extending median survival 
time (from 29 to 77  days) and rescuing motor function 
[154]. Another study by Alves et  al. employing a simi-
lar base-editing approach achieved comparable results 
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in vitro in restoring SMN levels by reversing SMN2 exon 
7 mutation, further strengthening the feasibility of the 
ABE-based strategy [155].

In addition to ABE therapy, a recent study 
demonstrated promising therapeutic results following 
knock-in of the Smn1 gene into the genome of a SMA 
mouse model through NHEJ-based HITI mechanism 
[156]. Although HITI-mediated Smn1 gene knock-in 
alone only increased the survival time of SMNΔ7 mice 
by 2–3 days, it exhibited similar effects to onasemnogene 
abeparvovec therapy in terms of restoring motor 
function. Furthermore, when HITI-mediated Smn1 
gene knock-in was combined with onasemnogene 
abeparvovec, survival time increased significantly relative 
to onasemnogene abeparvovec therapy alone [156]. 
As highlighted in that study, not only could the NHEJ 
mechanism be effective even in non-dividing cells such 
as motor neurons, but the AAV-PHP.eB vector deployed 
may enhance treatment efficacy by enabling more robust 
transduction into spinal motor neurons [156]. Together, 
these gene-editing strategies have shown promise in 
facilitating currently available SMA drug treatments and 
even as stand-alone therapy. However, clinical trials are 

still urgently needed to confirm their applicability and 
safety in humans. A summary of all of the aforementioned 
AAV-based gene therapies for treating SMA, including 
clinically-approved and solely preclinically assessed ones 
is presented in Fig. 1.

Pioneering future applications: biomarkers
The concept of precision medicine is now widely 
recognized. Clinically, a biomarker is often helpful to 
attain efficacious personalized treatment regimens, not 
only to optimize treatment dose, frequency, and even 
combination therapies, but also to predict treatment 
responses. For instance, dosing frequency for AAV-
based gene therapies is limited, primarily due to the 
immunogenicity of the AAV capsid. Treated individuals 
may have pre-existing immunity because of prior 
natural exposure to AAVs, leading to the presence of 
neutralizing antibodies. More importantly, after the first 
dose of AAV-based therapy, the immune system mounts 
a strong humoral and cellular response against the viral 
capsid, generating neutralizing antibodies and memory 
T cells that can rapidly neutralize the vector upon 
re-administration [94, 157, 158]. Therefore, repeat dosing 

Fig. 1  Illustration of AAV-based gene therapies for treating SMA. Different genetic materials delivered through AAVs are aimed at benefitting 
SMA patients with regard to different aspects of disease pathology.
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of the genetic materials using the AAV vector would not 
be feasible without accessory immunomodulating agents. 
Consequently, precise prescription of the first dose of an 
AAV-based treatment plan is especially critical. Thus, 
implementing predictive biomarkers within treatment 
plans is a desirable strategy for facilitating genetic NMD 
therapies.

Taking SMA as an example, since patient responsive-
ness to current therapeutics can vary among individuals, 
it is difficult to predict efficacy and optimize the choice 
of treatment plans. The copy number of SMN2, the sole 
gene source of SMN protein for SMA patients, is com-
monly used to predict age of disease onset, survival rate, 
and phenotypic severity. However, SMN2 copy number it 
is not a perfect indicator because: 1) not all SMN2 cop-
ies are equivalent; 2) SMN-independent genetic modi-
fiers exist; and 3) peripheral tissues are also important 
contributors to SMA pathology [39, 53, 159, 160]. Con-
sequently, it remains important to identify reliable bio-
markers that facilitate accurate diagnoses, prognoses, 
and treatment prescriptions at the earliest time point 
with the lowest cost.

A good biomarker should be easily detectable and 
reflect real pathology rather than just secondary symp-
toms. Studies aimed at identifying biomarkers reflecting 
SMA disease severity and treatment responses are being 
rigorously pursued, but evidence supporting the clinical 
applicability of canonical candidate biomarkers remains 
equivocal [161]. For example, SMN-related biomarkers 
appear to be too variable among patients to present any 
power in predicting disease severity. Moreover, although 
phosphorylated neurofilament heavy chain (pNfH) repre-
sents a promising reliable biomarker of disease severity 
and treatment efficacy in infant SMA patients, the results 
are contradictory for adult patients [161]. On the other 
hand, microRNAs (miRNAs), a class of small non-coding 
RNAs that regulate gene expression by inducing mRNA 
degradation or altering translation efficiency, represent 
promising candidate biomarkers of SMA. This is owing 
to miRNAs: 1) playing significant roles in motor neuron 
development and disease; 2) being stably present and eas-
ily detectable in biofluids (e.g., blood and cerebrospinal 
fluid); and 3) often exhibiting tissue- or cell type-specific 
expression, as is dysregulation of miRNA expression in 
various disease contexts [83, 86, 88, 162].

Uncovering disease predictive biomarkers can be 
especially challenging, but it is especially important 
for neurodegenerative disorders that affect the CNS, 
as neuronal alterations are more likely to be detectable 
centrally (e.g., in the cerebrospinal fluid) rather than 
peripherally (e.g., in blood) [163]. To date, a suite 
of miRNAs known to be dysregulated in SMA has 
demonstrated potential as either prognostic or predictive 

SMA biomarkers, as summarized in Table  8 [88, 163–
170]. Fortunato et  al. presented a review of miRNAs 
demonstrating potential as DMD biomarkers for 
diagnosis, prognosis, and disease progression monitoring 
[171]. Notably, miRNAs play an active role in cell–cell 
communication, with some being packaged for exocytosis 
and secreted as extracellular vesicles (EVs) [88, 172–174]. 
The EVs containing miRNAs can be taken up by recipient 
cells, where they may modulate target gene expression 
[174]. In this scenario, it is possible that a certain panel 
of miRNAs carried by EVs could represent candidate 
biomarkers to reflect disease progression and treatment 
outcome prediction. However, further investigation is 
needed to determine if EV-derived miRNAs provide 
greater specificity and sensitivity in prognosis and 
prediction than the total miRNA from bodily fluids. To 
date, none of the reported miRNAs among these studies 
has been tested in terms of predicting the treatment 
efficacy of any AAV-based gene therapies. Hence, 
clinical data regarding combined use of AAV-based gene 
therapies and predictive biomarkers are urgently needed.

Conclusions
In this mini-review, we have covered current successes 
in gene therapies for treating genetic NMDs. Specifically, 
in addition to splicing-modifying drugs for SMA, sev-
eral clinical trials are still ongoing for the only currently 
approved AAV-based gene replacement therapy, i.e., 
onasemnogene abeparvovec. Moreover, several preclini-
cal studies have already underscored the potential of a 
wide range of AAV-based gene therapies to mitigate the 
severity of SMA. Whether these novel therapies may be 
applied to strengthen current treatment regimens neces-
sitates more data from clinical settings. Herein, we have 
also explored the current status of gene therapies for 
treating DMD, briefly updating on recent progress and/
or outcomes of clinical trials of DMD gene replacement 
therapy.

To exemplify breakthroughs in gene therapy attrib-
utable to CRISPR/Cas9 technology, we have specifi-
cally highlighted two AAV-based gene-editing therapies 
applied to treating an SMA mouse model. The first one 
utilized an adenine base-editing strategy to convert 
the SMN2 gene into the SMN1 gene, which alone only 
elicited a moderate rescue effect. However, synergis-
tic administration together with a one-time nusinersen 
treatment mitigated SMA symptoms and significantly 
extended lifespan. The second study took advantage of 
the HITI approach, which similarly elicited a significant 
extension in the lifespan of SMA mice when co-adminis-
tered with the Smn1 gene replacement therapy. In terms 
of DMD, a number of gene-editing strategies targeting 
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different disease-causing mutations have been reported. 
These breakthroughs illuminate the possibility of patients 
receiving a permanent cure from just a single dose. In 
addition, they also raise the potential of tackling multi-
ple aspects of NMDs through an AAV cocktail. Despite 
these advances in AAV-based gene therapy, pioneering 
studies are still needed to identify valid and informative 
biomarkers that can guide treatment decisions and pre-
dict outcomes. Overall, the groundbreaking development 
of AAV-based therapeutic approaches has paved the way 
for future research aimed at curing genetic NMDs.
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